
Game of Trees

Stefan Sperling <stsp@openbsd.org>

EuroBSDcon 2019

What is Game of Trees?

Game of Trees is a work-in-progress version control system which
attempts to be appealing to OpenBSD developers.

designed and written from scratch

OpenBSD-style C code base

ISC licence

compatible with Git repositories

concise and useful manual pages

Game of Trees 2/72

Contributors
Advice, suggestions, documentation, and code:

Sebastian Benoit

Anthony Bentley

Landry Breuil

Theo Buehler

Philip Guenther

Sebastian Marie

Klemens Nanni

Carlos Mart́ın Nieto

Martin Pieuchot

Hiltjo Posthuma

Theo de Raadt

Gonzalo L. Rodriguez

Ingo Schwarze

Stefan Sperling

Joshua Stein

Patrick Steinhardt

Uwe Stuehler
Game of Trees 3/72

Game of Trees Design

frontends:

got (command line interface)
tog (ncurses-based interactive repository browser)
frontends call pledge(2) and unveil(2)

frontends use “public” library APIs only

library:

objects, commit graph, work tree, caching, diffing, merging
spawns libexec helpers (fork+exec) for repository read access
API is unstable; not yet intended for general consumption

libexec helpers:

standalone event-driven programs
decompression and parsing of repository data
directly linked to a small subset of library code
communication with main library over imsg
access to system calls severely limited

Game of Trees 4/72

Game of Trees Design

library

libexec helpers

fork+exec

Got work tree

Disk I/O

Git repository

Disk I/O

got tog

Game of Trees 5/72

Work Trees
A work tree contains a copy of versioned files for editing.
Users may create an arbitrary number of work trees.

Git repository

work tree work tree work tree

Each work tree remembers:

the path to its Git repository

its current branch reference

the commit(s) which file contents were fetched from

Optionally, work tree contents can be limited to a subtree of the
full tree stored in the repository.
Git’s repository-internal work tree is ignored.

Game of Trees 6/72

pledge(2) promises

libexec helpers: stdio recvfd

got(1)1: stdio rpath wpath cpath fattr flock proc

exec sendfd unveil

tog(1): stdio rpath wpath cpath flock proc tty

exec sendfd unveil

1exact list varies by command
Game of Trees 7/72

unveil(2) exposed paths

repository: "r" or "rwc"

work tree: "rwc"

/tmp: "rwc"

libexec helpers: "x"

unversioned files for import: "r"

Exceptions:

$EDITOR

commit message gets written before unveil(2) is applied

$HOME/.gitconfig

opened before unveil(2)
parsed by libexec helper

Game of Trees 8/72

libexec helpers

got-read-object – read header (type, size) from object file

got-read-blob – read blob object file

got-read-tree – read tree object file

got-read-commit – read commit object file

got-read-tag – read tag object file

got-read-pack – extract any type of object from pack file

got-read-gitconfig – read Git configuration file

Game of Trees 9/72

Git recap coming up

If you are familiar with Git some information will be old news to
you. We will keep it short. Lean back and relax :-)

Game of Trees 10/72

Git repository object types

commit

tree

blob tree

blob blob

tag commit

Game of Trees 11/72

On-disk object format

Blob, tree, commit, and tag objects:

”object type” NUL ”object size” NUL object data

Type and size are ASCII-encoded strings.
SHA1 hash of all the above constitutes the object’s ID.
After hashing, data is compressed with zlib when written to disk.
Each object is stored in a separate file, with a file name based on
the ID.

Game of Trees 12/72

Object data

Blob data:

file content

Tree data: list of entries:

entry object ID

entry stat(2) mode

entry name

Commit data:

tree object ID

list of parent commit object IDs

author + date

committer + date

log message

Tag data is similar to commit data.
Game of Trees 13/72

Pack files (1/2)

Delta-compressed collections of objects.
Pack files contain blobs, trees, commits, and tags, and also:

1. Offset Delta Objects

delta base: object at given pack file offset

2. Reference Delta Objects

delta base: object with given ID in same pack file

Pack index is stored in a separate file

list of object IDs and object data offsets

index entries are sorted by object ID

ID lookup uses binary search

Game of Trees 14/72

Pack files (2/2)

Use cases:

local storage of large object collections

transmission of a set of objects over the network

At scale, access to objects in pack files is generally faster than
access to loose objects in the file system. But pack files come at a
cost: Creation is expensive!

OpenBSD src.git fully packed2:

49.8M pack-0c3467692f110178cf674ede60894b091c7f8f95.idx

1022M pack-0c3467692f110178cf674ede60894b091c7f8f95.pack

2Your mileage may vary since packing involves heuristics
Game of Trees 15/72

References

References provide human-readable keys for object lookup.
References may be symbolic, i.e. point at other references.
Their most prominent use case is looking up branch head commits:

master

commit

HEADunified-buffer-cache

commit

commit

Game of Trees 16/72

Reference namespaces

References are organized in a namespace hierarchy:

refs/heads/... – local branch heads

refs/tags/... – for tag object lookup

refs/remotes/... – copies of other repositories’ histories

refs/got/... – for internal use by Game of Trees

Namespace prefix may be abbreviated or omitted.
Given unified-buffer-cache, try to look up:

1. refs/heads/unified-buffer-cache

2. refs/tags/unified-buffer-cache

3. refs/remotes/*/unified-buffer-cache

Game of Trees 17/72

Git recap done

Any questions about the Git repository format from Henning
before we continue?

Game of Trees 18/72

Game of Trees Command Line Interface

Set of commands was designed from scratch, borrowing user-facing
terminology from CVS, SVN, Mercurial, and Git.

Capture OpenBSD developer workflows

Prioritize ease of use and simplicity over flexibility

Offer strictly required features only

new features added if requested by OpenBSD developers

Minimize amount of command line flags and typing

parse options with getopt(3), not getopt long(3)

allow use of references, tags, and object IDs interchangably
accept abbreviated SHA1 object IDs

No colours!

Game of Trees 19/72

Current Game of Trees Command Set (1/2)

init – create repositories

import – create commits from unversioned files

checkout – create work trees containing versioned files

update – change work tree’s base commit

log – view commit history

diff – view local changes or differences between objects

blame – view line-by-line history of files

tree – list versioned files and folders in repository

status – check work tree for uncommitted local changes

ref – manage references

branch – manage branches

tag – manage tags

Game of Trees 20/72

Current Game of Trees Command Set (2/2)

add – add unversioned files to version control

remove – remove versioned files

revert – discard uncommitted local changes

commit – create new commit objects

cherrypick – merge change from another branch

backout – undo an already committed change

rebase – merge local branches with incoming changes

histedit – edit commit history of local branches

stage – stage a subset of changes for next commit

unstage – undo staging of changes

cat – show content of arbitrary objects

Game of Trees 21/72

Current Game of Trees Command Set

init, import, checkout, update

log, diff, blame, status

ref, branch, tag

add, remove, revert, commit

cherrypick, backout, rebase, histedit

stage, unstage

cat, tree

Game of Trees 22/72

Example: Starting from files (1/2)

|-- README

‘-- src

|-- Makefile

‘-- prog.c

src/prog.c:

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("hello world\n");

}

Game of Trees 23/72

Example: Starting from files (2/2)

Commands: init, import

$ got init /tmp/repo

$ cd /tmp/repo

$ got import -m "import demo project" /tmp/my-files

A /tmp/my-files/src/Makefile

A /tmp/my-files/src/prog.c

A /tmp/my-files/README

Created branch refs/heads/master with \

commit c7c2e404ffb0dd55cc34842431541fdd4f977a28

got import creates a root commit, i.e. the created commit has
no parent commits and history begins here. If the master branch
already exists, a different name must be chosen.

Game of Trees 24/72

Repository now contains the imported project

refs/heads/master

commit c7c2

HEAD

tree 99bc

blob d2a7: README tree a354: src

blob 9342: Makefile blob 66c0: prog.c

Game of Trees 25/72

Example: Creating a work tree

Command: checkout

$ got checkout /tmp/repo /tmp/wt

A /tmp/wt/README

A /tmp/wt/src/Makefile

A /tmp/wt/src/prog.c

Now shut up and hack

$

Work trees can be placed anywhere in the file system hierarchy.

Game of Trees 26/72

Example: Checking for uncommitted changes

Command: status

$ got status

? src/prog

M src/prog.c

? src/prog.d

? src/prog.o

$

For now, unversioned files can be ignored via a .cvsignore file, as
used in the OpenBSD ports tree.

Game of Trees 27/72

Example: Viewing uncommitted local changes

Command: diff

$ got diff

diff c7c2e404ffb0dd55cc34842431541fdd4f977a28 /tmp/wt

blob - 66c06bb066b1b5f7c72359c21ee6dafd54e256e1

file + src/prog.c

--- src/prog.c

+++ src/prog.c

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(int argc, char *argv[])

{

- printf("hello world\n");

+ printf("I like the flowers\n");

}

$

Game of Trees 28/72

Example: Committing local changes

Command: commit

$ got commit -m "spread the message"

M src/prog.c

Created commit 3326e467f63840c7aa10937634412d100d04e6e2

$

Most commands have short aliases.
got ci is the short alias for got commit.

Game of Trees 29/72

Newly created commit on the master branch

refs/heads/master

commit 3326

commit c7c2 tree f4af

blob d2a7: README tree 7a25: src

blob 9342: Makefile blob f3f5: prog.c

Game of Trees 30/72

Example: Discarding local changes

Command: revert

$ got status

M src/prog.c

$ got revert src/prog.c

R src/prog.c

$ got status

$

got revert is destructive and cannot be undone automatically!

Game of Trees 31/72

Example: Discarding local changes selectively (1/4)

Two changes, one of them bad:

@@ -1,5 +1,7 @@

#include <stdio.h>

int main(int argc, char *argv[])

{

- printf("I like the flowers\n");

+ printf("I like the daffodils\n");

}

+

+/* syntax error

Game of Trees 32/72

Example: Discarding local changes selectively (2/4)

Command: revert -p (mnemonic: “patch”)

$ got revert -p src/prog.c

@@ -1,5 +1,7 @@

#include <stdio.h>

int main(int argc, char *argv[])

{

- printf("I like the flowers\n");

+ printf("I like the daffodils\n");

}

/* syntax error

M src/prog.c (change 1 of 2)

revert this change? [y/n/q] n

Game of Trees 33/72

Example: Discarding local changes selectively (3/4)

@@ -3,3 +3,5 @@ int main(int argc, char *argv[])

{

printf("I like the daffodils\n");

}

+

+/* syntax error

M src/prog.c (change 2 of 2)

revert this change? [y/n/q] y

$

Game of Trees 34/72

Example: Discarding local changes selectively (4/4)

The bad change has been wiped out:

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(int argc, char *argv[])

{

- printf("I like the flowers\n");

+ printf("I like the daffodils\n");

}

$ got commit -m ’prefer the plant genus narcissus’

Real world use case: got revert -p can wipe out debug printfs

Game of Trees 35/72

Backing out commited changes (1/3)

Creating reversed changes requires a work tree which:

is fully updated to the latest commit on the relevant branch

may already contain other arbitrary local changes

will carry the reversed change until got commit

Game of Trees 36/72

Example: Backing out commited changes (2/3)

Command: backout

$ got backout 349d8

G src/prog.c

Backed out commit 349d80308aa17d90842afc5d460fade6b6de095c

$

Game of Trees 37/72

Example: Backing out commited changes (3/3)

Backed-out change has been merged locally for future commit:

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(int argc, char *argv[])

{

- printf("I like the daffodils\n");

+ printf("I like the flowers\n");

}

Game of Trees 38/72

Branches (1/3)

Branches are modeled as references which point at a chain of
commit objects:

master

commit

unified-buffer-cache

commit

commit

Game of Trees 39/72

Branches (2/3)

Game of Trees intentionally steers users towards creating a linear
history. There is currently no command3 which would allow users
to create commits with multiple parent commits like this:

commit

merge commit

commit commit

3got merge will have to be added for special cases such as vendor branches
Game of Trees 40/72

Branches (3/3)

Changes made in other repositories must be copied to the local
repository before they become visible.
Branches can temporarily store incoming changes separately from
local changes.
Once incoming and local changes are stored, they can be merged.

Game of Trees 41/72

Example: Creating a branch

Command: branch

$ got branch -l

* master: 349d80308aa17d90842afc5d460fade6b6de095c

$ got branch hiking

$ got branch -l

hiking: 349d80308aa17d90842afc5d460fade6b6de095c

* master: 349d80308aa17d90842afc5d460fade6b6de095c

$

Game of Trees 42/72

Repository now contains a new reference: hiking

refs/heads/master

commit 349d

refs/heads/hiking

In this example, we will store our local changes in hiking and
incoming changes in master4

4Storing incoming changes under refs/remotes/ is supported, too.
Game of Trees 43/72

Example: Switching between branches

Command: update -b (mnemonic: “branch”)

$ got update -b hiking

Switching work tree from refs/heads/master to refs/heads/hiking

Already up-to-date

$ got branch -l

* hiking: 349d80308aa17d90842afc5d460fade6b6de095c

master: 349d80308aa17d90842afc5d460fade6b6de095c

$

Game of Trees 44/72

Example: Creating commits on a branch (1/2)

Commit hiking-related change 1:

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(int argc, char *argv[])

{

- printf("I like the daffodils\n");

+ printf("I like the mountains\n");

}

$ got commit -m "this is a hiking club"

Game of Trees 45/72

Example: Creating commits on a branch (2/2)

Commit hiking-related change 2:

@@ -2,4 +2,5 @@

int main(int argc, char *argv[])

{

printf("I like the mountains\n");

+ printf("I like the rolling hills\n");

}

$ got commit -m "with a computer problem"

Game of Trees 46/72

The hiking branch now contains new commits

master

commit 349d

hiking

commit 6dc6

commit ca92

Game of Trees 47/72

A separate change arrives on the master branch

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(int argc, char *argv[])

{

- printf("I like the daffodils\n");

+ printf("I like the fireplace\n");

}

$ got commit -m "light it up"

Game of Trees 48/72

Repository with two distinct branches

master

commit 33ab

hiking

commit 6dc6

commit 349d

commit ca92

Commits on the hiking branch are based on commit 349d.
Game of Trees 49/72

We want commit history to be linear again, like this:

master

commit 33ab

hiking

commit

commit 349d

commit

Commit object IDs on master must not change!
Those commits are a permanent part of project history.
Commits on hiking may be rebased on top of commit 33ab.

Game of Trees 50/72

Rebasing branches to linearize commit history

Rebasing hiking onto master requires a work tree which:

is fully updated to the latest commit on the master branch

does not contain any local changes

will be switched to a temporary branch5 to accumulate
rebased commits

will then be switched to the rebased hiking branch

5Automatically created in the refs/got namespace
Game of Trees 51/72

Example: rebasing branches

Command: rebase

$ got up -b master

Switching work tree from refs/heads/hiking to refs/heads/master

U src/prog.c

Updated to commit 33ab33ecfacdc0a966a6272277a15e8692e80cae

$ got rebase hiking

C src/prog.c

got: conflicts must be resolved before rebasing can continue

$

Game of Trees 52/72

3-way merge conflicts

#include <stdio.h>

int main(int argc, char *argv[])

{

<<<<<<< commit ca929e9ee5e836a6af8d70a94e7abdb326c4e77c

printf("I like the mountains\n");

=======

printf("I like the fireplace\n");

>>>>>>> src/prog.c

}

Game of Trees checks file content for conflict markers.

Files containing conflict markers may not be committed6.

6This is a feature, not a bug.
Game of Trees 53/72

Excursion: diff3 algorithm (1/3)

Common misconception:

“Merging works like diff + patch” Wrong!!!

Given file O with this content:

1 2 3 4 5 6

And two files A and B, each derived from O:

A: 7 2 3 4 5 6
B: 1 2 3 4 8 6

(Imagine that each number represents a line of text.)

Game of Trees 54/72

Excursion: diff3 algorithm (2/3)

Compare O to A and mark regions with differences.
Also compare O to B and mark regions with differences.
Do not compare A to B, which regular diff would do!

A: 7© 2 3 4 5 6

O: 1© 2 3 4 5© 6

B: 1 2 3 4 8© 6

Regions changed by A and B do not overlap so there is no conflict.
Merge result:

7 2 3 4 8 6

Game of Trees 55/72

Excursion: diff3 algorithm (3/3)

Given two different files A and B, each derived from O:

A: 7 2 3 4 8 6
B: 9 0 3 4 8 6

Compare O to A and O to B, and mark changed regions:

A: 7© 2 3 4 8© 6

O: 1© 2© 3 4 5© 6

B: 9© 0© 3 4 8© 6

A and B do not agree on one of the two overlapping regions.
Merge result is ambiguous. Output contains a merge conflict:

7 2
3 4 8 6

9 0

http://www.cis.upenn.edu/~bcpierce/papers/diff3-short.pdf

Game of Trees 56/72

http://www.cis.upenn.edu/~bcpierce/papers/diff3-short.pdf

Example: resolve conflicts and continue rebasing

Command: rebase -c (mnemonic: “continue”)

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("I like the mountains\n");

printf("I like the fireplace\n");

}

$ got rebase -c

ca929e9ee5e8 -> 3d8aa2ddf185: this is a hiking club

C src/prog.c

got: conflicts must be resolved before rebasing can continue

$ f#ck this shit!

ksh: f#ck: not found

Game of Trees 57/72

More 3-way merge conflicts

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("I like the mountains\n");

<<<<<<< commit 6dc62c2c8c5b24483b02e8afb21a951d521a71f0

printf("I like the rolling hills\n");

=======

printf("I like the fireplace\n");

>>>>>>> src/prog.c

}

Game of Trees 58/72

Example: resolve conflicts and continue rebasing

@@ -2,5 +2,7 @@

int main(int argc, char *argv[])

{

printf("I like the mountains\n");

+ printf("I like the rolling hills\n");

printf("I like the fireplace\n");

+ printf("when the light is low\n");

}

$ got rebase -c

6dc62c2c8c5b -> 65070d4f62eb: with a computer problem

Switching work tree to refs/heads/hiking

$

Game of Trees 59/72

Rebase: Mission accomplished!

master

commit 33ab

hiking

commit 6507

commit 349d

commit 3d8a

Game of Trees 60/72

Example: View rebased commit history
Command: log -p (mnemonic: “patch”)

$ got log -p

commit 65070d4f62eb1c91aff54d06fd955ed1067f1173 (hiking)

from: Flan Hacker <flan_hacker@openbsd.org>

date: Wed Sep 18 11:37:42 2038 UTC

with a computer problem

diff 0e508849a2308e87394772661b2fdffacf3fb7a3 167a1902994851229d99833d4ca853206539d393

blob - 4cd87ed36bc46c0eb9740af0e41e5d0c3bf889e1

blob + 954c20c02c8814d34309fbe1c475a24261ce916c

--- src/prog.c

+++ src/prog.c

@@ -2,5 +2,7 @@

int main(int argc, char *argv[])

{

printf("I like the mountains\n");

+ printf("I like the rolling hills\n");

printf("I like the fireplace\n");

+ printf("when the light is low\n");

}

Game of Trees 61/72

Example: View rebased commit history

commit 3d8aa2ddf1853fd829a1a816eb14fbfff488468a

from: Flan Hacker <flan_hacker@openbsd.org>

date: Wed Sep 18 11:31:05 2038 UTC

this is a hiking club

diff 54f052b6a309c5aa9d766d465aee7063f5caceff 0e508849a2308e87394772661b2fdffacf3fb7a3

blob - 04005c8685e43cc4e3fae7a925df2c084bbd0c46

blob + 4cd87ed36bc46c0eb9740af0e41e5d0c3bf889e1

--- src/prog.c

+++ src/prog.c

@@ -1,5 +1,6 @@

#include <stdio.h>

int main(int argc, char *argv[])

{

+ printf("I like the mountains\n");

printf("I like the fireplace\n");

}

commit 33ab33ecfacdc0a966a6272277a15e8692e80cae (master)

from: Flan Hacker <flan_hacker@openbsd.org>

date: Wed Sep 18 08:33:07 2038 UTC

light it up

Game of Trees 62/72

Features added for Git users

In Game of Trees, these features are supported but optional:

got stage – stage a subset of changes for next commit

got commit will commit staged changes only if present
got stage -p: stage changes interactively

got histedit – edit commit history of local branches

edit, reorder, drop commits
merge multiple commits into one

Game of Trees 63/72

tog(1) – read-only repository browser

Supports log, diff, blame, and tree views
Game of Trees 64/72

Project Timeline (2017, 2018)

September 2017: Git hallway track at EuroBSDcon in Paris

November 2017: p2k17 backroom Git meeting, read
references (p2k17), read loose objects (s2k17)

December 2017: diff objects

February 2018: read packfiles

March 2018: got(1) CLI, check out files, pledge(2)

April 2018: tog(1) TUI, fork(2), imsg (p2k18)

June 2018: commit graph, pthreads in tog(1) (g2k18)

Sep 2018: fork+exec (n2k18)

December 2018: update files to different commits

Game of Trees 65/72

Project Timeline (2019)

January 2019: apply unveil(2)

February 2019: 3-way merge, got(1) used for OpenBSD dev

March 2019: add/remove files, per-path updates (t2k19)

May 2019: create commits (g2k19)

June 2019: merge changes between branches

July 2019: rebase branches, edit branch history

August 2019: commit staging, got-0.1 release

September 2019: got-0.15 release

Game of Trees 66/72

Planned features

gotadmin(8) – repository administration

create pack files (important next step)

consistency check

garbage collection of unreferenced objects

import Git “fast-import” data streams

also export such data streams

we may want a plaintext backup format – is this suitable?

Game of Trees 67/72

Planned features

gotd(8) – privsep server deamon

manage queue of incoming commits

sanity-check incoming commits

don’t bother with hook scripts; all checks are built-in

server-side rebasing of commits to enforce linear history

network protocol libexec helpers

SSH protocol speaker (read/write)
HTTPS protocol speaker (read-only)
speaker compatible with Git (common denominator)

mirror repositories from/to remote servers

Game of Trees 68/72

Planned features

Pull changes from remote repositories

fetch remote commits to refs/remote namespace

attempt to rebase the work tree’s current branch

manual rebase required in case of merge conflicts

Push changes to remote repositories served by gotd(8)

https://gameoftrees.org/notes-pull-push

Game of Trees 69/72

https://gameoftrees.org/notes-pull-push

Planned features

Provide “push by default” commit behaviour

commit to central server and local repo at the same time

can be supported for uncommitted/staged changes only

simplified workflow

just checkout, commit, pull/update, commit, ...

Game of Trees 70/72

Planned features

gotweb(8) – repository viewer for browsers

implement as frontend alongside got(1) and tog(1)

provide read-only browsing of repositories

integrate with existing tooling such as:

httpd(8)

slowcgi(8)

Kristap’s kcgi(8)

Game of Trees 71/72

Thank you for listening! Got questions?

https://gameoftrees.org

Game of Trees 72/72

https://gameoftrees.org

